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Synthesis of alkaloids from aminol derivatives by b-fragmentation
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Abstract—The fragmentation of primary alkoxyl radicals, often described as low yielding and plagued by side reactions, proceeded
in good to excellent yields when aminol derivatives were used as substrates. Remarkably, no side reactions such as hydrogen
abstraction or oxidation were observed. The fragmentation can be coupled with an alkylation reaction to give 2-substituted pyr-
rolidine and piperidine rings such as alkaloid analogues and functionalized, chiral nitrogen heterocycles.
� 2003 Elsevier Ltd. All rights reserved.
The b-fragmentation of alkoxyl radicals (Scheme 1) can
be an efficient method for synthesizing a wide range of
compounds, including medium- and large-sized rings,
heterocycles and halogenated compounds.1 For
instance, the synthesis of natural products2 such as
deoxyvernolepin,2a;n cyclophellitol,2h;m rapamycin2o and
muscone2p used a b-scission as the key step. The alkoxyl
radicals can be generated from the corresponding alco-
hols by treatment with reagents such as (diacetoxy-
iodo)benzene (DIB) and iodine, HgO-iodine or LTA.1

When tertiary alkoxyl radicals are generated, b-frag-
mentation is the major or the exclusive pathway. How-
ever, the fragmentation of primary alkoxyl radicals
is usually plagued by side reactions, such as intramo-
lecular hydrogen abstraction,3 addition to double
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bonds4 or oxidation,1j and thus has been scarcely used in
synthesis.

In a recent publication, we reported that the fragmen-
tation of primary alkoxyl radicals could proceed in good
yields by using carbohydrate substrates5 1 (Scheme 1).
By controlling the reaction conditions, the stereochem-
istry of the substituents and the protecting groups, the
b-fragmentation was made to predominate over the side
reactions. This proved to be a direct route to polyols and
a,x-differently substituted cyclic ethers 2.

These results suggested that the b-fragmentation of
primary alkoxyl radicals could be synthetically useful
with appropriate substrates. The alkoxyl radicals gen-
erated from aminol derivatives 3 (Scheme 2) seemed
particularly promising. Many aminol derivatives are
commercial products or are readily obtained therefrom.
Moreover, highly functionalized aminols can be
synthesized from sugars and other chiral materials. If
the b-scission takes place, different nitrogen heterocycles
4 might be easily obtained.

A variety of substituents could be introduced at the
2-position. In effect, the C-radical 5 resulting from the
fragmentation would probably be oxidized by excess
reagent to an acyliminium ion 6, which could be trapped
by different carbon or heteroatom nucleophiles.6 The
resulting 2-substituted heterocycles 4 are present in
alkaloids,7a chiral auxiliaries7b;c and synthetic drugs.7d;e

However, the alkoxyl radical 3 could also give undesired
reactions, such as hydrogen abstraction. The distance
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between 2-Ha and the alkoxyl radical lies in the 2.3–
2.8�A range where H-abstraction is favored. Whether the
scission or the abstraction would predominate had yet
to be determined.

In order to study the possible competition between
b-scission and other feasible reactions, different aminol
derivatives 7–9 (Scheme 3) were prepared in good yields
by acylation or sulfonylation of commercial precursors.
When substrates 7–9 were treated with DIB and iodine
at room temperature (Table 1, entries 1–3), the scission
products 10–12 were isolated in good yields. To our
satisfaction, no products derived from intramolecular
hydrogen abstraction or oxidation were detected. These
results suggested that the fragmentation was much faster
than H-abstraction. Although the scission is a reversible
reaction, a rapid oxidation of the C-radical to an
acyliminium ion would render the whole process irre-
versible.

The addition of carbon nucleophiles to the acyliminium
intermediate was studied next. After treatment of com-
pounds 7–9 with DIB-iodine for 2.5 h, the reaction
Table 1. One-pot b-fragmentation of aminol derivatives––oxidation–nucleop

Entry Substrate Nucleophile

1 7 H2O
a

2 8 H2O
a

3 9 H2O
a

4 7 AllylTMSb

5 8 AllylTMSb

6 9 AllylTMSb

7 16 AllylTMSb

8 19 AllylTMSb

9 19 PhC(OTMS)@CH2
b

10 23 AllylTMSb

11 23 PhC(OTMS)@CH2
b

a The aminol derivative (1mmol) in dry dichloromethane (15mL) was treate

perature under nitrogen for 2.5 h. After that time, it was poured into aque
b The aminol derivative (1mmol) in dry dichloromethane (15mL) was treate

perature under nitrogen for 2.5 h. After that time, it was cooled to 0 �C an

added. The reaction was allowed to reach rt and stirred for 4 h, then it w

CH2Cl2.
c The yields are given for products purified by chromatography on silica gel
mixture was cooled to 0 �C and allyltrimethylsilane and
BF3ÆOEt2 were added (entries 4–6), affording the desired
allylpyrrolidines 13–15 in good to excellent yields.

This one-pot fragmentation–allylation reaction was then
used to synthesize a precursor of the alkaloid coniine,
which is the active principle of hemlock poison.8 Thus,
when the piperidine derivative 16 was treated under the
previous conditions (entry 7), the volatile allyl derivative
17 was isolated in moderate yield. This derivative has
been previously transformed by us8a into the coniine
methyl carbamate 18, in quantitative yield.

The scission of pyroglutamol 19 (Scheme 4) was studied
in order to determine whether the formation of a nitro-
hilic additiona ;b

Products (%)c Scission overall yield (%)

10 (66) 66

11 (67) 67

12 (64) 64

10 (4), 13 (91) 95

11 (10), 14 (76) 86

12 (5), 15 (86) 91

17 (52) 52

20 (85) 85

22 (73) 73

24 (41), 25 (23), 26 (22) 86

27 (64) 64

d with DIB (2.5mmol) and iodine (1mmol) and stirred at room tem-

ous NaHCO3–10% Na2S2O3 and extracted with CH2Cl2.

d with DIB (2.5mmol) and iodine (1mmol) and stirred at room tem-

d BF3ÆEt2O (2 equiv) and an excess of the nucleophile (5 equiv) were

as poured into aqueous NaHCO3–10% Na2S2O3 and extracted with

.
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gen radical would compete with the formation of the
primary alkoxyl radical. Rewardingly, the formation and
scission of the alkoxyl radical were the main reactions,
and the allylation product 20 was obtained in 85% yield
(entry 8). This allyl derivative was transformed into the
indolizidine alkaloid analogue 21 in two steps. Many
indolizidine alkaloids are glycosidase enzyme inhibitors,
and exhibit antiviral or antitumour activities.9

The addition of other carbon nucleophiles, such as enol
silyl ethers, was also studied. When pyroglutamol 19
was treated with DIB-iodine followed by the addition of
phenyl(trimethylsilyloxy)ethene and a Lewis acid, the
phenyl ketone 22 was formed in good yield (entry 9).
The formation of ketone 22, a sedamine alkaloid ana-
logue,7a highlights the versatility of this methodology.

Since many substrates for the fragmentation–alkylation
reaction can be easily prepared from sugars and other
chiral materials, this methodology could afford a wide
range of functionalized, chiral nitrogen heterocycles.
For instance, the iminosugar 23 was easily prepared
from commercially available ribonolactone.10 When the
scission–alkylation reaction (Scheme 5) was carried out
using allyltrimethylsilane as the nucleophile (entry 10),
the allyl derivative 24 and two lactones 25 and 26 were
obtained,11–13 in 86% overall yield.

The three products derive from the same intermediate
23a, formed by addition of the nucleophile from the less
hindered face. The intermediate evolved either by loss of
the TMS group (path a) to give 24, or by nucleophilic
additionof the carbamate oxygen and concomitant loss of
the tert-butyl group,14 (path b) to give the lactones 25 and
26. Since the TMS group can be replaced by a hydroxyl
group,15 a dioxygenated chain may be easily obtained.

When phenyl(trimethylsilyloxy)ethene was used as a
nucleophile (entry 11), the alkylation proceeded with
high stereoselectivity, affording exclusively the 2R phe-
nyl ketone 2716 (Scheme 6). This fragmentation–alkyl-
ation reaction also took place in good yield, and no side-
reactions were detected.

In summary, the fragmentation of primary alkoxyl rad-
icals proceeded in good to excellent yields when aminol
derivatives were used as substrates. Remarkably, no side-
reactions such as hydrogen abstraction or oxidation were
observed. The fragmentation can be coupled with an
alkylation reaction, and thus, a hydroxymethyl group
can be replaced in one step by a more complex lateral
chain. The application of this methodology to the syn-
thesis of 2-substituted pyrrolidine and piperidine rings,
such as alkaloid analogues and functionalized, chiral
nitrogen heterocycles has been illustrated.
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12.6Hz, 5-Ha), 3.71/3.91 (1H, d, J ¼ 12:6Hz/d,
J ¼ 12:9Hz, 5-Hb), 4.43 (1H, m, 2-H; at 70 �C appears
as dd, J ¼ 5:7, 6.1Hz), 4.61/4.70 (1H, d, J ¼ 5:9Hz/d,
J ¼ 6:0Hz, 3-H), 4.82/4.87 (1H, dd, J ¼ 5:4, 5.4Hz/dd,
J ¼ 5:5, 5.4Hz, 4-H), 7.44/7.46 (2H, dd, J ¼ 7:6, 7.7Hz/
dd, J ¼ 7:6, 7.6Hz), 7.55/7.57 (1H, dd, J ¼ 5:6, 7.4Hz/dd,
J ¼ 6:6, 7.4Hz), 7.94/7.96 (2H, d, J ¼ 7:0Hz/d,
J ¼ 7:2Hz); 13C NMR (100.6MHz, CDCl3) Mixture of
two rotamers: d 24.8 (CH3), 26.9 (CH3), 28.3 (3 ·CH3),
39.4/40.1 (CH2), 51.7/52.8 (CH2), 60.85 (CH), 78.8/79.6
(CH), 79.8/80.1 (C), 83.9/84.7 (CH), 111.6 (C), 128.2
(2 ·CH), 128.6/128.7 (2 ·CH), 133.3/133.5 (CH), 136.6
(C), 153.8/154.1 (C), 197.6/198.6 (C); MS m=z (rel inten-
sity) 361 (Mþ, 3), 186 (Mþ+H–C8H7O–CMe3, 100); Anal.
Calcd for C20H27NO5: C, 66.46; H, 7.53; N, 3.88. Found:
C, 66.26; H, 7.92; N, 3.67. (b) The assigned stereochem-
istry was also supported by NOESY experiments. Spatial
correlations were observed for 2-H (dH 4.43) and Meb (dH

1.45), for CHaHbCOPh (dH 3.18)/3-H (dH 4.70), for 3-H
(dH 4.70)/Mea (dH 1.30)/4-H (dH 4.82), and for 4-H (dH

4.82)/CHaHb COPh (dH 3.44).
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